Training Generative Adversarial Networks via Primal-Dual Subgradient Methods: A Lagrangian Perspective on GAN
نویسندگان
چکیده
We relate the minimax game of generative adversarial networks (GANs) to finding the saddle points of the Lagrangian function for a convex optimization problem, where the discriminator outputs and the distribution of generator outputs play the roles of primal variables and dual variables, respectively. This formulation shows the connection between the standard GAN training process and the primal-dual subgradient methods for convex optimization. The inherent connection does not only provide a theoretical convergence proof for training GANs in the function space, but also inspires a novel objective function for training. The modified objective function forces the distribution of generator outputs to be updated along the direction according to the primal-dual subgradient methods. A toy example shows that the proposed method is able to resolve mode collapse, which in this case cannot be avoided by the standard GAN or Wasserstein GAN. Experiments on both Gaussian mixture synthetic data and real-world image datasets demonstrate the performance of the proposed method on generating diverse samples.
منابع مشابه
Fisher GAN
Generative Adversarial Networks (GANs) are powerful models for learning complex distributions. Stable training of GANs has been addressed in many recent works which explore different metrics between distributions. In this paper we introduce Fisher GAN which fits within the Integral Probability Metrics (IPM) framework for training GANs. Fisher GAN defines a critic with a data dependent constrain...
متن کاملA Variational Inequality Perspective on Generative Adversarial Nets
Stability has been a recurrent issue in training generative adversarial networks (GANs). One common way to tackle this issue has been to propose new formulations of the GAN objective. Yet, surprisingly few studies have looked at optimization methods specifically designed for this adversarial training. In this work, we review the “variational inequality” framework which contains most formulation...
متن کاملThe Information-Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Modeling
A variety of learning objectives have been recently proposed for training generative models. We show that many of them, including InfoGAN, ALI/BiGAN, ALICE, CycleGAN, VAE, β-VAE, adversarial autoencoders, AVB, and InfoVAE, are Lagrangian duals of the same primal optimization problem. This generalization reveals the implicit modeling trade-offs between flexibility and computational requirements ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملApproximate Primal Solutions and Rate Analysis for Dual Subgradient Methods
In this paper, we study methods for generating approximate primal solutions as a by-product of subgradient methods applied to the Lagrangian dual of a primal convex (possibly nondifferentiable) constrained optimization problem. Our work is motivated by constrained primal problems with a favorable dual problem structure that leads to efficient implementation of dual subgradient methods, such as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.01765 شماره
صفحات -
تاریخ انتشار 2018